Training Resilience with Persistent Memory Pooling
using CXL Technology

Miryeong Kwon!, Junhyeok Jang', Hanjin Choi'!, Sangwon Lee!?, Myoungsoo Jung!-
Computer Architecture and Memory Systems Laboratory
Korea Advanced Institute of Science and Technology (KAIST)!, Panmnesia?
http://camelab.org

I. INTRODUCTION

Deep learning-based recommendation systems take the ma-
jority of machine resources in diverse production servers and
datacenters [1]]. To make the recommendation more accurate,
hyperscalers have rapidly scaled up the recommendation mod-
els (RMs). As a result, recent RMs often consume more than
tens of terabytes of memory space [2f, [3[]. In addition, it is
important for the RMs to be failure tolerant as they should be
trained for many days without accuracy degradation [4]].

We propose TRAININGCXL that can efficiently process
large-scale RMs in the pool of disaggregated memory while
making training failure-tolerant with low overhead. To this
end, i) we integrate persistent memory (PMEM) and GPU
into a cache-coherent domain as Type-2 devices of CXL 3.0.
Enabling CXL allows PMEM to be directly placed in GPU’s
memory hierarchy, such that GPU can access PMEM without
software intervention. TRAININGCXL introduces computing
and checkpointing logic near the CXL controller, thereby
training data and managing persistency in an active manner.
Considering PMEM’s vulnerability, ii) we utilize the unique
characteristics of RMs and take the checkpointing overhead off
the critical path of their training. Lastly, iii)) TRAININGCXL
employs an advanced checkpointing technique that relaxes the
updating sequence of embeddings across training batches. The
evaluation shows that TRAININGCXL achieves 5.2x speedup
and 72.6% energy savings compared to the modern PMEM-
based recommendation systems.

II. BACKGROUND

Recommendation Model Training. To achieve high accu-
racy, RMs exploit both sparse features (categorical informa-
tion) and dense features (numeric information). To this end,
RMs employ embedding operations (table lookup/update) and
non-linear transformations (Bottom-MLP) for sparse and dense
features, respectively. The operations encode the features into
a vector and then pass them to a main model called Top-MLP.

Figure [T| shows a training process of modern deep learning-
based RM. Considering different levels of the computing
intensiveness, the bottom-MLP operations are performed in
GPU, whereas the embedding operations are processed at
the host side (CPU). For these embedding operations, the
host reads the target embedding vectors from the underlying
storage by referring to the table indices in the sparse features.
Then the host aggregates the retrieved embedding vectors
using simple arithmetic (e.g., sum/mean) to encode them into
an input vector for the top-MLP. As the bottom-MLP and

BWP

Embedding)(Checkpoint
update

Top- Feature
MLP interaction,

_ Feature Top-
interaction MLP

Fig. 1: Training process of DLRM.

embedding operations are processed in different places (i.e.,
GPU and CPU), each encoded input data for the top-MLP are
prepared in parallel to shorten the training time. The backward-
propagation step of RM training (BWP) is similar to FWP, but
all its operations are processed in the reverse order. It updates
the model parameters/embedding by calculating the gradient
and then subtracting it from the model parameters/embedding.
Challenges. Production-scale RMs often cannot be accom-
modated in a system’s local memory since their embedding
tables exceed tens of TBs [2]], [3|]. To this end, several ap-
proaches employ high-performance solid-state drives (SSDs)
and expand their host memory using SSDs as backend storage
media [2f], [5]. While this SSD-integrated memory expansion
technique can handle large-sized input data, they, unfortu-
nately, suffer from severe performance degradation. This is
because RM’s embedding lookup frequently generates small-
sized random read, whereas SSDs are optimized for bulk
sequential 1/Os.

Furthermore, prior approaches require explicit checkpoints
for fault recovery. Since embedding updates on SSDs can de-
grade the training performance significantly, the existing RMs
utilize the SSDs for only memory expansion purposes. Note
that the write latency of SSDs is longer than the latency of all
conventional memory operations by orders of magnitude.

III. TRAININGCXL

We propose TRAININGCXL that can efficiently process
large-scale RMs in the underlying memory pool, disaggregated
over compute express link (CXL) [6]. Our CXL-enabled
memory expander employs PMEMs, which exhibit similar
performance to DRAM and provide large memory capacity.
In addition, TRAININGCXL leverages PMEMs’ non-volatility
to support failure-tolerant training with low overhead. Our
contributions can be summarized as follows.

Intelligent CXL memory expansion. Figure shows an
overview of the proposed TRAININGCXL’s system archi-

Host CXL controller
DRAM \%‘ DCOH
CXL-GPU
DRAM ’m‘@ ’ﬁlﬂm
cX-MEeM| Tex=Gpu S LMEM logic logic |
PMEM (Type 2) (Type 2) — o

(a) Cache-coherent domain. (b) Internals of CXL-MEM.
Fig. 2: TRAININGCXL’s system architecture.

FWP | BWP

Host

CXL-
GPU

Inter-
connect

B-MLP FI T-MLP

[MLP Parameter

1 Embedding vectors

CXL-
MEM

CHKPT
R (Ebed log)

Fig. 3: Execution of batch-aware checkpoint.

tecture. TRAININGCXL offers two CXL devices: a CXL-
enabled GPU (CXL-GPU) and a PMEM-based memory ex-
pander (CXL-MEM). The devices are connected to a host
CPU through CXL Switch(es). The devices are designed as
Type-2 of CXL 3.0 by introducing device coherent agent
(DCOH) in their hardware. Because of their device type,
CXL-MEM’s internal memory can be exposed to CXL-GPU’s
local memory and vice versa. This makes the embeddings and
gradients exchanged between those two devices without any
software intervention running on the host CPU. To accelerate
RM training, CXL-MEM employs simple computing and
checkpointing logic along with a Type-2 endpoint controller,
which can perform embedding operations and failure tolerance
management near PMEM (Figure [2b).

Batch-aware checkpoint. To achieve high throughput,
TRAININGCXL lets CXL-GPU and CXL-MEM perform
MLPs and embedding operations in parallel. However, persist-
ing the model and embedding updates at the end of processing
each batch make the training latency yet longer. To address
this, we propose batch-aware checkpoint that is aware of
embeddings involved in the individual batch and performs
undo logging in the background. In typical applications, such
a background undo logging scheme is infeasible as the target
location where the system needs to update is unavailable
before their computation completes. However, in the case of
RM training, the embedding vector indices to be updated
can be known in advance from the sparse features at the
beginning of each batch. Our scheme logs the embeddings
vectors corresponding to the indices to CXL-MEM by utilizing
the idle time of CXL-MEM as shown in Figure [3]
Embedding lookup and checkpoint relaxation. While our
batch-aware checkpoint hides the relatively long latency of
CXL-MEM’s writes, the training performance is yet limited
owing to PMEM’s architectural constraints; PMEM’s read
stalls if the read is requested right after a write for the
same physical layout of PMEM. This phenomenon is known
as read-after-write (RAW) [7], and is frequently observed
between the embedding update of the Nth batch and the

B Checkpoint (] T-MLP Il B-MLP < |MpveEM[]SSD
< |H Transfer (] Embedding < | Eexw
Er7EmRNI|4 7 RIZ| 20k = RIS\ 25k dmENA] &)

@ 20 20 12 @
i 45 16 <75
15 8 L
[30 12 50
c 10 g)
8 15 3 4 82
g Comur O Cpmur Osel E O 9oy
G PRS0 GEES AP0 WS s EEREE

Fig. 4: Training time breakdown. Fig. 5: Energy.

embedding lookup of the (/N + 1)th batch [8]. However, since
the embedding lookup and update are composed of vector
addition/subtraction, the execution order between embedding
lookup and update can be relaxed by utilizing their com-
mutative property. Thus, TRAININGCXL proposes a relaxed
embedding lookup. It removes the RAW issue by performing
embedding lookup (aggregation) for the (N +1)th batch before
the embedding update of the Nth batch. The aggregated vector
is then updated by using the gradient aggregated in the same
way how vectors are aggregated during embedding lookup.

IV. EVALUATION

We evaluate TrainingCXL using a prototype implemented
atop of multiple FPGAs. We prepare three different con-
figurations, SSD (SSD), PMEM (PMEM), and PCle-attached
PMEM (PCIe), based on the underlying media where the
embedding tables are stored into. While embedding operations
of SSD and PMEM are performed on the host CPU, PCIe
is capable of near-data processing like our CXL-MEM. We
use open source DLRM benchmark [9] and prepare four
recommendation system models (RM) for the evaluation.

Figure] shows RM’s execution time training a single batch.
As shown in the figure, PMEM exhibits 1063.8x speedup than
SSD, on average. This is because PMEM can be accessed in
a byte-addressable manner, and its read/write is faster than
SSD. PCIe accelerates the embedding operations, thereby
shortening the execution time by 2.7x than PMEM. Further,
CXL achieves a speedup of 1.9x, on average, compared to
PCle. This is because CXL takes such overhead off the critical
path by CXL-based automatic data movement and batch-aware
checkpointing. Note that CXL also eliminates the RAW issue
thereby reducing the embedding lookup time.

We also analyze energy consumption between SSD, PMEM,
and CXL; the energy values of SSD and CXL are normalized
the those of PMEM. As we can see from Figure 5] CXL
exhibits 3.6 and 3.4x lower energy consumption than SSD
and PMEM, respectively, on average.

ORIGINAL PUBLICATION

Miryeong Kwon, Junhyeok Jang, Hanjin Choi, Sangwon
Lee, and Myoungsoo Jung. “Failure Tolerant Training with
Persistent Memory Disaggregation over CXL.” IEEE Micro
(2023). https://ieeexplore.ieee.org/document/10018437

ACKNOWLEDGEMENT

We thank for all the technical support of Panmnesia. This
work is protected by one or more patents. Myoungsoo Jung is
the corresponding author (mj@camelab.org).

https://ieeexplore.ieee.org/document/10018437

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

REFERENCES

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. Applied machine learning at facebook: A datacenter
infrastructure perspective. In 2018 IEEE International Symposium on
High Performance Computer Architecture. IEEE, 2018.

Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and
Ping Li. Aibox: Ctr prediction model training on a single node. In
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew
Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo
Park, et al. Software-hardware co-design for fast and scalable training
of deep learning recommendation models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022.
Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudi-
gere, Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyan-
skiy, and Murali Annavaram. Check-N-Run: a checkpointing system
for training deep learning recommendation models. In /9th USENIX
Symposium on Networked Systems Design and Implementation, 2022.
Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias Langer, Fan Yu, Jie
Liu, Shijie Liu, Daniel G Abel, Xu Guo, Jianbing Dong, et al. Merlin
hugectr: Gpu-accelerated recommender system training and inference.
In Proceedings of the 16th ACM Conference on Recommender Systems,
2022.

CXL Consortium. Compute express link specification 3.0.

Gyuyoung Park, Miryeong Kwon, Pratyush Mahapatra, Michael Swift,
and Myoungsoo Jung. Bibim: A prototype multi-partition aware het-
erogeneous new memory. In /0th USENIX Workshop on Hot Topics in
Storage and File Systems, 2018.

Youngeun Kwon and Minsoo Rhu. Training personalized recommen-
dation systems from (gpu) scratch: Look forward not backwards. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, An-
drey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoor-
thi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen,
Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personalization and recommen-
dation systems. CoRR, abs/1906.00091, 2019.

	Introduction
	Background
	TrainingCXL
	Evaluation
	References

