
Architectural Support for Efficient Data Movement
in Disaggregated Systems

I. DATA MOVEMENT IN DISAGGREGATED SYSTEMS

Traditional data centers include monolithic servers that
tightly integrate CPU, memory and disk (Fig. 1a). Instead,
Disaggregated Systems (DSs) [1]–[3] organize multiple com-
pute (CC), memory (MC) and storage devices as indepen-
dent, failure-isolated components interconnected over a high-
bandwidth network (Fig. 1b). DSs can greatly reduce data
center costs by providing improved resource utilization, re-
source scaling, failure-handling and elasticity in modern data
centers [1]–[4].
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Fig. 1. (a) Traditional systems vs (b) DSs.

The MCs provide large pools of main memory (remote
memory), while the CCs include the on-chip caches and a few
GBs of DRAM (local memory) that acts as a cache of remote
memory. In this context, a large fraction of the application’s
data (∼ 80%) [1], [3], [5] is located in remote memory, and can
cause large performance penalties (see Fig. 2) from remotely
accessing data over the network.

Alleviating data access overheads is challenging in DSs
for the following reasons. First, DSs are not monolithic and
comprise independently managed entities: each component
has its own hardware controller, and a specialized kernel
monitor uses its own functionality to manage the component it
runs on (only communicates with other monitors via network
messaging if there is a need to access remote resources).
This characteristic necessitates a distributed and disaggregated
solution that can scale to a large number of independent
components in the system. Second, there is high variability
in remote memory access latencies since they depend on the
locations of the MCs, contention from other jobs that share
the same network and MCs, and data placements that can
vary during runtime or between multiple executions. This
necessitates a solution that is robust towards fluctuations in
the network/remote memory bandwidth and latencies. Third,
a major factor behind the performance slowdowns is the
commonly-used approach in DSs [1], [3]–[5] of moving data at
page granularity. This approach effectively provides software
transparency, low metadata costs in memory management, and
high spatial locality in many applications. However, it can
cause high bandwidth consumption and network congestion,

and often significantly slows down accesses to critical path
cache lines in other concurrently accessed pages.

Fig. 2 presents a performance analysis of different data
movement schemes using DSs for a representative set of
heterogeneous workloads. We evaluate a MC and a CC with
local memory to fit ∼20% of the application data, and the
network bandwidth to be 1/2-1/8× of the bus bandwidth [1],
[5]. Performance of all schemes is normalized to that of the
monolithic approach where all data fits in the local memory
of the CC. We make three observations.
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Fig. 2. Data movement overheads in DSs.
First, the typically-used page scheme of moving data at

a page granularity incurs large slowdowns over the mono-
lithic Local configuration due to transferring large amounts
of data over the network that slows down accesses to other
pages. Instead, when pages are moved for free, i.e., page-free,
performance significantly improves thanks to spatial locality
benefits within pages. Second, moving data always at a fixed
granularity (cache-line via LLC or page via local memory)
cannot provide robustness across heterogeneous applications
and network configurations: some applications can benefit
from cache line (e.g., pr, nw) or page granularity (e.g., pf,
dr) data movements, while the best-performing granularity
also depends on network characteristics (e.g., bf, ts). Third,
naively moving data at both granularities (cache-line+page)
to serve data requests with the latency of the packet that
arrives earlier to the CC is still quite inefficient, while critical
cache line requests are still queued behind large concurrently
accessed pages. In contrast, Fig. 2 shows that DaeMon (see
§III) significantly reduces data movement overheads in DSs
across various network/application characteristics.

II. PRIOR WORK

Prior works [1]–[25] propose OS kernels, system-level so-
lutions, software management systems, architectures for DSs.
These works do not tackle the data movement challenge in
DSs, and thus our work is orthogonal to them.

Prior works on hybrid systems [26]–[38] integrate die-
stacked DRAM [39] as DRAM cache of a large main mem-
ory [26], [28], [31] in a monolithic server, and tackle high page



movement costs in two-tiered physical memory via page place-
ment/hot page selection schemes or by moving data at smaller
granularity, e.g., cache line. However, data movement in
DSs poses fundamentally different challenges. First, accesses
across the network are significantly slower than within the
server, thus intelligent page placement/movement cannot by
itself address these high costs. Second, DSs incur significant
variations in access latencies based on the current network ar-
chitecture and concurrent jobs sharing the MCs/network, thus
necessitating an solution primarily designed for robustness to
this variability. Finally, DSs include independently managed
MCs and networks shared by independent CCs running un-
known jobs. Thus, unlike hybrid systems, the solution cannot
assume that the memory management at the MCs can be
fully controlled by the CPU side. Our work is the first to
examine the data movement problem in fully DSs, and design
an effective solution for DSs.

III. DaeMon’S KEY IDEAS

DaeMon (Fig. 3) is an adaptive and scalable mechanism to
alleviate data costs in DSs, consisting of three techniques.
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Fig. 3. High-level overview of DaeMon.

(1) Decoupled Multiple Granularity Data Movement. We
integrate two separate hardware queues to serve data requests
from remote memory at two granularities, i.e., cache line (via
the sub-block queue to LLC) and page (via the page queue to
local memory) granularity, and effectively prioritize moving
cache lines over moving pages via a bandwidth partitioning
approach: a queue controller serves cache line requests with a
higher predefined fixed rate than page requests to ensure that
any given time a certain fraction of the bandwidth resources
is always allocated to serve cache line moves fast. This key
technique enables (i) low metadata overheads by retaining
page migrations, (ii) high performance by leveraging data
locality within pages, and (iii) fewer slowdowns in cache line
data movements that are on the critical path, from expensive
page moves that may have been previously triggered.
(2) Selection Granularity Data Movement. To provide an
adaptive data movement solution, we include in each CC two
separate hardware buffers to track pending data migrations for
both cache line (via the inflight sub-block buffer) and page (via
the inflight page buffer) granularity, and a selection granularity
unit to decide if a data request should be served by cache line,
page or both based on the utilization of the inflight buffers.
Given that DaeMon prioritizes cache line over page moves,
the inflight buffers are utilized in different ways, allowing
us to capture the application behavior and the system load
during runtime. For example: (a) If there is low locality within
pages, the page buffer has higher utilization than the sub-
block buffer (cache lines are prioritized), thus the selection

unit favors moving cache lines and throttles pages (and vice-
versa). (b) Under low bandwidth utilization scenarios, the page
buffer utilization is low, thus the selection unit schedules more
page movements (or both granularities) to obtain data locality
benefits (and vice-versa).
(3) Link Compression on Page Movements. We employ
hardware compression units at both the CCs and MCs to highly
compress pages migrated over the network. Link compression
on page moves reduces the network bandwidth consumption
and alleviates network bottlenecks.
Synergy of three techniques. DaeMon cooperatively in-
tegrates all three techniques to significantly alleviate data
movement overheads, and provide robustness towards network,
architecture and application characteristics:
(1) Prioritizing requested cache lines helps DaeMon to tolerate
high (de)compression latencies in page migrations over the
network, while also leveraging benefits of page migrations
(low metadata costs, spatial locality in pages).
(2) Compressed pages consume less network bandwidth, en-
abling DaeMon to reserve part of the bandwidth to effectively
prioritize critical path cache line accesses.
(3) Compression on page moves helps DaeMon to adapt to
the data compressibility: if the pages are highly compressible,
the inflight page buffer empties at a faster rate, and DaeMon
favors sending more pages (and vice-versa).

IV. DaeMon’S KEY RESULTS

We extend Sniper [40] to simulate DSs, and evaluate ca-
pacity intensive workloads from graph processing, HPC, data
analytics, bioinformatics, machine learning domains. DaeMon
reduces data access costs and improves performance by 3.06×
and 2.39×, respectively, over the widely-adopted approach
of moving data at a page granularity. DaeMon leverages
the synergy of all three techniques to provide robustness,
while retaining the spatial locality, transparency and metadata
management benefits of page granularity movements. We show
that DaeMon achieves high system performance for various
network/architecture configurations and applications (Fig. 4
top), and multiple concurrently running jobs in the DS (Fig. 4
bottom), compared to the widely-adopted approach of moving
data at page granularity.
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Fig. 4. DaeMon’s benefits over the page scheme, (i) varying the MCs, network
bandwidth and application, and (ii) running multiple applications in a 4-CPU
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