
Architectural Support for Efficient Data Movement
in Disaggregated Systems

I. DATA MOVEMENT IN DISAGGREGATED SYSTEMS

Traditional data centers include monolithic servers that
tightly integrate CPU, memory and disk (Fig. 1a). Instead,
Disaggregated Systems (DSs) [1]–[3] organize multiple com-
pute (CC), memory (MC) and storage devices as indepen-
dent, failure-isolated components interconnected over a high-
bandwidth network (Fig. 1b). DSs can greatly reduce data
center costs by providing improved resource utilization, re-
source scaling, failure-handling and elasticity in modern data
centers [1]–[4].

Local 
Memory

CPU

Compute 
Component

processor 
monitor

…

network across servers

Remote
Memory

Controller

memory 
monitor

Memory 
Component

Remote
Memory

Controller

memory 
monitor

Memory 
Component

Disk

Controller

disk 
monitor

Storage 
Component

Local 
Memory

CPU

Compute 
Component

processor 
monitor

network across hardware components

…

… …

(a) (b)

Memory

CPU

Monolithic
Server

monolithic 
kernel

Disk

Memory

CPU

Monolithic
Server

monolithic 
kernel

Disk

Fig. 1. (a) Traditional systems vs (b) DSs.

The MCs provide large pools of main memory (remote
memory), while the CCs include the on-chip caches and a few
GBs of DRAM (local memory) that acts as a cache of remote
memory. In this context, a large fraction of the application’s
data (∼ 80%) [1], [3], [5] is located in remote memory, and can
cause large performance penalties (see Fig. 2) from remotely
accessing data over the network.

Alleviating data access overheads is challenging in DSs
for the following reasons. First, DSs are not monolithic and
comprise independently managed entities: each component
has its own hardware controller, and a specialized kernel
monitor uses its own functionality to manage the component it
runs on (only communicates with other monitors via network
messaging if there is a need to access remote resources).
This characteristic necessitates a distributed and disaggregated
solution that can scale to a large number of independent
components in the system. Second, there is high variability
in remote memory access latencies since they depend on the
locations of the MCs, contention from other jobs that share
the same network and MCs, and data placements that can
vary during runtime or between multiple executions. This
necessitates a solution that is robust towards fluctuations in
the network/remote memory bandwidth and latencies. Third,
a major factor behind the performance slowdowns is the
commonly-used approach in DSs [1], [3]–[5] of moving data at
page granularity. This approach effectively provides software
transparency, low metadata costs in memory management, and
high spatial locality in many applications. However, it can
cause high bandwidth consumption and network congestion,

and often significantly slows down accesses to critical path
cache lines in other concurrently accessed pages.

Fig. 2 presents a performance analysis of different data
movement schemes using DSs for a representative set of
heterogeneous workloads. We evaluate a MC and a CC with
local memory to fit ∼20% of the application data, and the
network bandwidth to be 1/2-1/8× of the bus bandwidth [1],
[5]. Performance of all schemes is normalized to that of the
monolithic approach where all data fits in the local memory
of the CC. We make three observations.

kc tr pr nw bf bc ts sp sl hp pf dr rs GM0
2
4
6
8

Sl
o

w
d

o
w

n

stch-lat=100 bw-fact=1/22019
cache-line page page-free cache-line+page DaeMon

kc tr pr nw bf bc ts sp sl hp pf dr rs GM0

2

4

6
Sl

o
w

d
o

w
n

stch-lat=100 bw-fact=1/82019 97144
cache-line page page-free cache-line+page DaeMon

Fig. 2. Data movement overheads in DSs.
First, the typically-used page scheme of moving data at

a page granularity incurs large slowdowns over the mono-
lithic Local configuration due to transferring large amounts
of data over the network that slows down accesses to other
pages. Instead, when pages are moved for free, i.e., page-free,
performance significantly improves thanks to spatial locality
benefits within pages. Second, moving data always at a fixed
granularity (cache-line via LLC or page via local memory)
cannot provide robustness across heterogeneous applications
and network configurations: some applications can benefit
from cache line (e.g., pr, nw) or page granularity (e.g., pf,
dr) data movements, while the best-performing granularity
also depends on network characteristics (e.g., bf, ts). Third,
naively moving data at both granularities (cache-line+page)
to serve data requests with the latency of the packet that
arrives earlier to the CC is still quite inefficient, while critical
cache line requests are still queued behind large concurrently
accessed pages. In contrast, Fig. 2 shows that DaeMon (see
§III) significantly reduces data movement overheads in DSs
across various network/application characteristics.

II. PRIOR WORK

Prior works [1]–[25] propose OS kernels, system-level so-
lutions, software management systems, architectures for DSs.
These works do not tackle the data movement challenge in
DSs, and thus our work is orthogonal to them.

Prior works on hybrid systems [26]–[38] integrate die-
stacked DRAM [39] as DRAM cache of a large main mem-
ory [26], [28], [31] in a monolithic server, and tackle high page



movement costs in two-tiered physical memory via page place-
ment/hot page selection schemes or by moving data at smaller
granularity, e.g., cache line. However, data movement in
DSs poses fundamentally different challenges. First, accesses
across the network are significantly slower than within the
server, thus intelligent page placement/movement cannot by
itself address these high costs. Second, DSs incur significant
variations in access latencies based on the current network ar-
chitecture and concurrent jobs sharing the MCs/network, thus
necessitating an solution primarily designed for robustness to
this variability. Finally, DSs include independently managed
MCs and networks shared by independent CCs running un-
known jobs. Thus, unlike hybrid systems, the solution cannot
assume that the memory management at the MCs can be
fully controlled by the CPU side. Our work is the first to
examine the data movement problem in fully DSs, and design
an effective solution for DSs.

III. DaeMon’S KEY IDEAS

DaeMon (Fig. 3) is an adaptive and scalable mechanism to
alleviate data costs in DSs, consisting of three techniques.

Remote
Memory

Controller

Compute 
Component

Memory 
Component

Local 
Memory

CPU

 LLC

Page 
Queue

Sub-block 
Queue

(De) 
Compr. 

Unit

Cachelines
Compressed 

Pages

Network 

DaeMon Compute Engine DaeMon Memory Engine

Page 
Queue

Sub-block 
QueueSelectio

n 
G

ranularity U
nit

(De) 
Compr. 

Unit

Fig. 3. High-level overview of DaeMon.

(1) Decoupled Multiple Granularity Data Movement. We
integrate two separate hardware queues to serve data requests
from remote memory at two granularities, i.e., cache line (via
the sub-block queue to LLC) and page (via the page queue to
local memory) granularity, and effectively prioritize moving
cache lines over moving pages via a bandwidth partitioning
approach: a queue controller serves cache line requests with a
higher predefined fixed rate than page requests to ensure that
any given time a certain fraction of the bandwidth resources
is always allocated to serve cache line moves fast. This key
technique enables (i) low metadata overheads by retaining
page migrations, (ii) high performance by leveraging data
locality within pages, and (iii) fewer slowdowns in cache line
data movements that are on the critical path, from expensive
page moves that may have been previously triggered.
(2) Selection Granularity Data Movement. To provide an
adaptive data movement solution, we include in each CC two
separate hardware buffers to track pending data migrations for
both cache line (via the inflight sub-block buffer) and page (via
the inflight page buffer) granularity, and a selection granularity
unit to decide if a data request should be served by cache line,
page or both based on the utilization of the inflight buffers.
Given that DaeMon prioritizes cache line over page moves,
the inflight buffers are utilized in different ways, allowing
us to capture the application behavior and the system load
during runtime. For example: (a) If there is low locality within
pages, the page buffer has higher utilization than the sub-
block buffer (cache lines are prioritized), thus the selection

unit favors moving cache lines and throttles pages (and vice-
versa). (b) Under low bandwidth utilization scenarios, the page
buffer utilization is low, thus the selection unit schedules more
page movements (or both granularities) to obtain data locality
benefits (and vice-versa).
(3) Link Compression on Page Movements. We employ
hardware compression units at both the CCs and MCs to highly
compress pages migrated over the network. Link compression
on page moves reduces the network bandwidth consumption
and alleviates network bottlenecks.
Synergy of three techniques. DaeMon cooperatively in-
tegrates all three techniques to significantly alleviate data
movement overheads, and provide robustness towards network,
architecture and application characteristics:
(1) Prioritizing requested cache lines helps DaeMon to tolerate
high (de)compression latencies in page migrations over the
network, while also leveraging benefits of page migrations
(low metadata costs, spatial locality in pages).
(2) Compressed pages consume less network bandwidth, en-
abling DaeMon to reserve part of the bandwidth to effectively
prioritize critical path cache line accesses.
(3) Compression on page moves helps DaeMon to adapt to
the data compressibility: if the pages are highly compressible,
the inflight page buffer empties at a faster rate, and DaeMon
favors sending more pages (and vice-versa).

IV. DaeMon’S KEY RESULTS

We extend Sniper [40] to simulate DSs, and evaluate ca-
pacity intensive workloads from graph processing, HPC, data
analytics, bioinformatics, machine learning domains. DaeMon
reduces data access costs and improves performance by 3.06×
and 2.39×, respectively, over the widely-adopted approach
of moving data at a page granularity. DaeMon leverages
the synergy of all three techniques to provide robustness,
while retaining the spatial locality, transparency and metadata
management benefits of page granularity movements. We show
that DaeMon achieves high system performance for various
network/architecture configurations and applications (Fig. 4
top), and multiple concurrently running jobs in the DS (Fig. 4
bottom), compared to the widely-adopted approach of moving
data at page granularity.

kc tr pr
nw bf bc ts sp sl hp pf dr rs

0
1
2
3
4
5

Sp
ee

d
up

9 10 24
15

21
15

20

1MC-bw=1/4
2MCs-bw=1/4

2MCs-bw=1/8
4MCs-bw=1/4

4MCs-bw=1/8

bf-dr-
ts-nw

bf-dr-
ts-sp

pr-dr-
sp-nw

pr-nw-
ts-sp

bc-dr-
ts-sp

tr-dr-
ts-sp

bc-nw-
ts-sp

tr-nw-
ts-sp

dr-ts-
sp-nw

0
1
2
3
4
5
6
7

Sp
ee

d
up

stch-lat=100 bw-fact=1/2
Core 1 Core 2 Core 3 Core 4

Fig. 4. DaeMon’s benefits over the page scheme, (i) varying the MCs, network
bandwidth and application, and (ii) running multiple applications in a 4-CPU
CC and a MC.



REFERENCES

[1] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos:
A disseminated, distributed os for hardware resource disaggregation. In
OSDI, OSDI’18, page 69–87, USA, 2018. USENIX Association.

[2] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. Clio: A hardware-software co-designed disaggregated memory
system, 2022.

[3] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. Mind: In-network memory man-
agement for disaggregated data centers. In SOSP, 2021.

[4] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. Rethinking software runtimes
for disaggregated memory. In ASPLOS, ASPLOS 2021, page 79–92,
2021.

[5] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network
requirements for resource disaggregation. In OSDI, OSDI’16, page
249–264, 2016.

[6] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation
and the application. In 12th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 20). USENIX Association, July 2020.

[7] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. Welcome to zombieland: Practical and energy-efficient memory
disaggregation in a datacenter. In EuroSys, 2018.

[8] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu
Shi, and Scott Shenker. Network support for resource disaggregation in
next-generation datacenters. In HotNets, 2013.

[9] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Ra-
jesh Venkatasubramanian, and Michael Wei. Remote memory in the age
of fast networks. In SoCC, SoCC ’17, page 121–127, 2017.

[10] Qizhen Zhang, Yifan Cai, Sebastian G. Angel, Vincent Liu, Ang Chen,
and B. T. Loo. Rethinking data management systems for disaggregated
data centers. In CIDR, 2020.

[11] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch. System-
level implications of disaggregated memory. In HPCA, 2012.

[12] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime. In
OSDI, pages 261–280. USENIX Association, November 2020.

[13] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.
One-sided rdma-conscious extendible hashing for disaggregated mem-
ory. In USENIX ATC, pages 15–29. USENIX Association, July 2021.

[14] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. Hailstorm:
Disaggregated compute and storage for distributed lsm-based databases.
In ASPLOS, ASPLOS ’20, page 301–316, 2020.

[15] Ivy Peng, Roger Pearce, and Maya Gokhale. On the memory under-
utilization: Exploring disaggregated memory on hpc systems. In SBAC-
PAD, 2020.

[16] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-defined far memory in warehouse-
scale computers. In ASPLOS, ASPLOS ’19, page 317–330, 2019.

[17] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient memory disaggregation with infiniswap. In
NSDI, 2017.

[18] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote regions: a simple abstraction for remote memory.
In USENIX ATC, 2018.

[19] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutso-
vasilis, Andrea Reale, Kostas Katrinis, and H. Peter Hofstee. Thymes-
isflow: A software-defined, hw/sw co-designed interconnect stack for
rack-scale memory disaggregation. In MICRO, pages 868–880, 2020.

[20] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina,
S. Lopez-Buedo, Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and
T. Berends. Rack-scale disaggregated cloud data centers: The dredbox
project vision. In DATE, 2016.

[21] Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vutukuru,
and Purushottam Kulkarni. Dime: A performance emulator for disag-
gregated memory architectures. In APSys, APSys ’17, 2017.

[22] Pramod Subba Rao and George Porter. Is memory disaggregation
feasible? a case study with spark sql. In ANCS, ANCS ’16, page 75–80,
2016.

[23] Georgios Zervas, Hui Yuan, Arsalan Saljoghei, Qianqiao Chen, and
Vaibhawa Mishra. Optically disaggregated data centers with minimal
remote memory latency: Technologies, architectures, and resource allo-
cation [invited]. JOCN, 2018.

[24] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. Direct access, High-Performance memory disaggregation with
DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022.

[25] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mick-
ens, Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M.
Levy, and Amin Vahdat. Carbink: Fault-Tolerant far memory. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022.

[26] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P.
Jouppi. Simple but effective heterogeneous main memory with on-chip
memory controller support. In SC, 2010.

[27] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long
Zheng, and Rentong Guo. Hardware/software cooperative caching for
hybrid dram/nvm memory architectures. In ICS, ICS ’17, 2017.

[28] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar Iyer,
Srihari Makineni, Donald Newell, Yan Solihin, and Rajeev Balasub-
ramonian. Chop: Adaptive filter-based dram caching for cmp server
platforms. In HPCA, 2010.

[29] Jagadish B. Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilkerson,
and Mahmut T. Kandemir. Chameleon: A dynamically reconfigurable
heterogeneous memory system. In MICRO, 2018.

[30] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh,
and Dean M. Tullsen. Mempod: A clustered architecture for efficient
and scalable migration in flat address space multi-level memories. In
HPCA, 2017.

[31] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In ASPLOS,
ASPLOS ’17, 2017.

[32] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice,
Mike Ignatowski, and Gabriel H. Loh. Heterogeneous memory ar-
chitectures: A hw/sw approach for mixing die-stacked and off-package
memories. In HPCA, 2015.

[33] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime data man-
agementon non-volatile memory-based heterogeneous main memory. In
SC, 2017.

[34] Gabriel H. Loh and Mark D. Hill. Efficiently enabling conventional
block sizes for very large die-stacked dram caches. In MICRO, 2011.

[35] Gabriel Loh and Mark D. Hill. Supporting very large dram caches with
compound-access scheduling and missmap. IEEE Micro, 2012.

[36] Chia Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Cameo:
A two-level memory organization with capacity of main memory and
flexibility of hardware-managed cache. In MICRO, 2014.

[37] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and Lizy K.
John. Silc-fm: Subblocked interleaved cache-like flat memory organiza-
tion. In HPCA, 2017.

[38] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth? have it all with
footprint cache. In ISCA, ISCA ’13, 2013.

[39] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook
Kim, Hanho Jin, and Keith Kim. HBM DRAM Technology and
Architecture. In IMW, 2017.

[40] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper:
Exploring the level of abstraction for scalable and accurate parallel
multi-core simulations. In SC, pages 52:1–52:12, November 2011.


